Quantum effects in the Brownian motion of a particle in a double well potential in the overdamped limit.
نویسندگان
چکیده
Quantum effects in the noninertial Brownian motion of a particle in a double well potential are treated via a semiclassical Smoluchowski equation for the time evolution of the reduced Wigner distribution function in configuration space allowing one to evaluate the position correlation function, its characteristic relaxation times, and dynamic susceptibility using matrix continued fractions and finite integral representations in the manner of the classical Smoluchowski equation treatment. Reliable approximate analytic solutions based on the exponential separation of the time scales of the fast intrawell and slow overbarrier relaxation processes are given. Moreover, the effective and the longest relaxation times of the position correlation function yield accurate predictions of both the low and high frequency relaxation behavior. The low frequency part of the dynamic susceptibility associated with the Kramers escape rate behaves as a single Lorentzian with characteristic frequency given by the quantum-mechanical reaction rate solution of the Kramers problem. As a particular example, quantum effects in the stochastic resonance are estimated.
منابع مشابه
Effects of Brownian motion and Thermophoresis on MHD Mixed Convection Stagnation-point Flow of a Nanofluid Toward a Stretching Vertical Sheet in Porous Medium
This article deals with the study of the two-dimensional mixed convection magnetohydrodynamic (MHD) boundary layer of stagnation-point flow over a stretching vertical plate in porous medium filled with a nanofluid. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis in the presence of thermal radiation. The skin-friction coefficient, Nusselt number an...
متن کاملEntropy production of a Brownian ellipsoid in the overdamped limit.
We analyze the translational and rotational motion of an ellipsoidal Brownian particle from the viewpoint of stochastic thermodynamics. The particle's Brownian motion is driven by external forces and torques and takes place in an heterogeneous thermal environment where friction coefficients and (local) temperature depend on space and time. Our analysis of the particle's stochastic thermodynamic...
متن کاملCFD simulations on natural convection heat transfer of alumina-water nanofluid with Brownian motion effect in a 3-D enclosure
The CFD simulation has been undertaken concerning natural convection heat transfer of a nanofluid in vertical square enclosure, whose dimension, width height length (mm), is 40 40 90, respectively. The nanofluid used in the present study is -water with various volumetric fractions of the alumina nanoparticles ranging from 0-3%. The Rayleigh number is . Fluent v6.3 is used to simulate nanofluid ...
متن کاملUnderdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion
It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients....
متن کاملPath integral approach to Brownian motion driven with an ac force.
Brownian motion in a periodic potential driven by an ac (oscillatory) force is investigated for the full range of damping constant from the overdamped limit to the underdamped limit. The path (functional) integral approach is advanced to produce formulas for the probability distribution function and for the current of the Brownian particle in response to an ac driving force. The negative fricti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 131 8 شماره
صفحات -
تاریخ انتشار 2009